
Gridsim
Release 0.1.3

Julia Ebert

Apr 17, 2020

CONTENTS

1 Index 1
1.1 Getting Started . 1
1.2 Class Reference . 11
1.3 Development . 19

2 About 21

3 Quick Install 23

4 Links 25

5 Contact 27

Index 29

i

ii

CHAPTER

ONE

INDEX

1.1 Getting Started

1.1.1 Installation

Note: This assumes that you’re already familiar with virtual environments and pip.

Virtual Environment Setup

Create a Python 3 virtual environment in the current location in subfolder called venv, then set it as the Python source.

$ python3 -m venv venv
$ source venv/bin/activate

You can deactivate the virtual environment with deactivate.

Quick Install

This package is available through pip, so it’s easy to install. With your virual environment active, run:

$ pip install gridsim

Within your own code, you can now import the Gridsim library components, such as:

import gridsim as gs

Create an empty World of 100 x 100 grid cells
my_world = gs.World(100, 100)

1

Gridsim, Release 0.1.3

1.1.2 Basic Usage

This will walk you through setting up your first robot and complete simulation.

On this page

• Test using built in examples

• Creating a simple robot

• A minimal simulation example

• Adding the Viewer

• Using configuration files

• Logging data

• Complete example

Test using built in examples

The examples are in the examples directory of the source code. In the near future, I’ll set up a way to run the examples
directly when you install the package.

Creating a simple robot

For more detailed information about developing custom robots, see Make your own Robot.

To start, we will only need to make a simple robot based on the GridRobot. This needs to implement three methods:

• receive_msg(): Code that is run when a robot receives a message

• init(): Code that is run once when the robot is created

• loop(): Code that is run in every step of the simulation

Create a file for your robot class. Let’s call it random_robot.py. Below is a simple Robot that moves randomly
and changes direction every 10 seconds. You can copy this or directly download random_robot.py

1 import random
2

3 from gridsim.grid_robot import GridRobot
4 import gridsim as gs
5

6

7 class RandomRobot(GridRobot):
8 # Change direction every 10 ticks
9 DIR_DURATION = 10

10

11 def init(self):
12 self.set_color(255, 0, 0)
13 self._msg_sent = False
14

15 # Next tick when Robot will change direction
16 self._next_dir_change = self.get_tick()
17

(continues on next page)

2 Chapter 1. Index

Gridsim, Release 0.1.3

(continued from previous page)

18 def receive_msg(self, msg: gs.Message, dist: float):
19 # This robot got a message from another robot
20 self._msg_sent = True
21

22 def loop(self):
23

24 # Change direction every DIR_DURATION ticks
25 tick = self.get_tick()
26 if tick >= self._next_dir_change:
27 new_dir = random.choice(GridRobot.DIRS)
28 self.set_direction(new_dir)
29 self._next_dir_change = tick + RandomRobot.DIR_DURATION
30

31 # Broadcast a test message to any robots nearby
32 msg = gs.Message(self.id, {'test': 'hello'})
33 self.set_tx_message(msg)
34

35 # Change color depending on whether messages have been sent or received
36 # Robot will be white when it has successfully sent & received a message
37 green = 255 * self._msg_sent
38 self.set_color(255, green, 0)

A minimal simulation example

To run a simulation, you need to create a couple of robots, place them in a World. Then you call the step() method
to execute you simulation step-by-step. step() will handle running all of the robots’ code, as well as communication
and movement.

Use the code below or download minimal_simulation.py.

1 import gridsim as gs
2

3 from random_robot import RandomRobot
4

5

6 def main():
7 grid_width = 50 # Number of cells for the width & height of the world
8 num_robots = 5
9 num_steps = 100 # simulation steps to run

10

11 # Create a few robots to place in your world
12 robots = []
13 for n in range(num_robots):
14 robots.append(RandomRobot(grid_width-2*n,
15 grid_width-2*n))
16

17 # Create a 50 x 50 World with the Robots
18 world = gs.World(grid_width, grid_width, robots=robots)
19

20 # Run the simulation
21 for n in range(num_steps):
22 # Execute a simulation step
23 world.step()
24 # To make sure it works, print the tick (world time)
25 print('Time:', world.get_time())

(continues on next page)

1.1. Getting Started 3

Gridsim, Release 0.1.3

(continued from previous page)

26

27 print('SIMULATION FINISHED')
28

29

30 if __name__ == '__main__':
31 # Run the simulation if this program is called directly
32 main()

Adding the Viewer

With that simple example, you have no way to see what the robots are doing. For that, we add a Viewer. This
requires adding only two lines of code to our minimal simulation above.

Use the code below or download viewer_simulation.py.

1 import gridsim as gs
2

3 from random_robot import RandomRobot
4

5

6 def main():
7 grid_width = 50 # Number of cells for the width & height of the world
8 num_robots = 5
9 num_steps = 100 # simulation steps to run

10

11 # Create a few robots to place in your world
12 robots = []
13 for n in range(num_robots):
14 robots.append(RandomRobot(grid_width-2*n,
15 grid_width-2*n))
16

17 # Create a 50 x 50 World with the Robots
18 world = gs.World(grid_width, grid_width, robots=robots)
19

20 # Create a Viewer to display the World
21 viewer = gs.Viewer(world)
22

23 # Run the simulation
24 for n in range(num_steps):
25 # Execute a simulation step
26 world.step()
27

28 # Draw the world
29 viewer.draw()
30

31 # To make sure it works, print the tick (world time)
32 print('Time:', world.get_time())
33

34 print('SIMULATION FINISHED')
35

36

37 if __name__ == '__main__':
38 # Run the simulation if this program is called directly
39 main()

Notice that adding the Viewer slows down the time to complete the simulation, because the display rate of the Viewer

4 Chapter 1. Index

Gridsim, Release 0.1.3

limits the simulation rate. If you want to run lots of simulations, turn off your Viewer.

Using configuration files

Gridsim also provides the ConfigParser for using YAML configuration files. This simplifies loading parameters
and (as described in the next section) saving parameters with simulation results data.

The ConfigParser is un-opinionated; it doesn’t place any restrictions on what your configuration files look like,
as long as they’re valid YAML files.

Compared to our minimal_simulation.py, we only need one line to create our ConfigParser, from which
we can retrieve any parameter values.

Use the code below or download config_simulation.py and YAML configuration file simple_config.
yml.

1 import gridsim as gs
2

3 from random_robot import RandomRobot
4

5

6 def main():
7 config = gs.ConfigParser('simple_config.yml')
8 print(config.get('name'))
9 grid_width = config.get('grid_width')

10 num_robots = config.get('num_robots')
11 # You can specify a default value in case a parameter isn't in the
12 # configuration file
13 num_steps = config.get('num_steps', default=100)
14

15 # Create a few robots to place in your world
16 robots = []
17 # Configuration values can also be lists, not just single values.
18 x_pos = config.get('robot_x_pos')
19 for n in range(num_robots):
20 robots.append(RandomRobot(x_pos[n],
21 grid_width-2*n))
22

23 # Create a 50 x 50 World with the Robots
24 world = gs.World(grid_width, grid_width, robots=robots)
25

26 # Run the simulation
27 for n in range(num_steps):
28 # Execute a simulation step
29 world.step()
30 # To make sure it works, print the tick (world time)
31 print('Time:', world.get_time())
32

33 print('SIMULATION FINISHED')
34

35

36 if __name__ == '__main__':
37 # Run the simulation if this program is called directly
38 main()

1.1. Getting Started 5

Gridsim, Release 0.1.3

Logging data

Gridsim has a built-in Logger, designed to easily save data from your simulations to HDF5 files. This allows you to
store complex data and simulation configurations together in one place. HDF5 files are also easy to read and write in
many different programming languages.

There are three main ways to save data to your log files:

• Save the parameters in your configuration with log_config(). (Note that not all data types can be saved
with log_config. See its documentation for more details.)

• Save a single parameter (that’s not in your configuration file) with log_param()

• Save the state of your simulation/robots with log_state(). (This requires some setup.)

In order to log the state of the World, you first need to tell the Logger what you want to save about the log_state,
this function is called and the result is added to your dataset. You can add as many aggregators as you want, each with
their own name.

We can extend our config_simulation.py to show the three types of logging described above. Use the code
below or download logger_simulation.py.

1 import gridsim as gs
2 from typing import List
3 import numpy as np
4 from datetime import datetime
5

6 from random_robot import RandomRobot
7

8

9 def green_agg(robots: List[gs.Robot]) -> np.ndarray:
10 """
11 This is a dummy aggregator function (for demonstration) that just saves
12 the value of each robot's green color channel
13 """
14 out_arr = np.zeros([len(robots)])
15 for i, r in enumerate(robots):
16 out_arr[i] = r._color[1]
17

18 return out_arr
19

20

21 def main():
22 config = gs.ConfigParser('simple_config.yml')
23 print(config.get('name'))
24 grid_width = config.get('grid_width')
25 num_robots = config.get('num_robots')
26 # You can specify a default value in case a parameter isn't in the
27 # configuration file
28 num_steps = config.get('num_steps', default=100)
29

30 # Create a few robots to place in your world
31 robots = []
32 # Configuration values can also be lists, not just single values.
33 x_pos = config.get('robot_x_pos')
34 for n in range(num_robots):
35 robots.append(RandomRobot(x_pos[n],
36 grid_width-2*n))
37

(continues on next page)

6 Chapter 1. Index

Gridsim, Release 0.1.3

(continued from previous page)

38 # Create a 50 x 50 World with the Robots
39 world = gs.World(grid_width, grid_width, robots=robots)
40

41 # Logger
42 trial_num = config.get('trial_num', default=1)
43 # Create a logger for this world that saves to the `test.h5` file
44 logger = gs.Logger(world, 'test.h5', trial_num=trial_num,
45 overwrite_trials=True)
46 # Tell the logger to run the `green_agg` function every time that
47 # `log_state` is called
48 logger.add_aggregator('green', green_agg)
49 # Save the contents of the configuration, but leave out the 'name' parameter
50 logger.log_config(config, exclude='name')
51 # Save the date/time that the simulation was run
52 logger.log_param('date', str(datetime.now()))
53

54 # Run the simulation
55 for n in range(num_steps):
56 # Execute a simulation step
57 world.step()
58

59 # Log the state every step
60 logger.log_state()
61

62 # To make sure it works, print the tick (world time)
63 print('Time:', world.get_time())
64

65 print('SIMULATION FINISHED')
66

67

68 if __name__ == '__main__':
69 # Run the simulation if this program is called directly
70 main()

Complete example

Most simulations will involve all of these components, and multiple trials. You can download a complete, detailed
example here: complete_simulation.py, as well as a corresponding YAML configuration file: ex_config.
yml

1.1.3 Make your own Robot

The Gridsim library provides a Robot class that manages underlying behavior and drawing of robots, making it easy
for you to quickly implement your own functionality and algorithms.

In fact, the default Robot class is an abstract class; you must implement your own Robot subclass. There are five
abstract Robot methods that you must implement in your own class. (Inputs and outputs are not shown.)

• move(): Step-wise movement of the robot on the grid

• comm_criteria(): Distance-based criteria for whether or not another robot is within communication range
of this robot.

• receive_msg(): Code that is run when a robot receives a message

• init(): Code that is run once when the robot is created

1.1. Getting Started 7

Gridsim, Release 0.1.3

• loop(): Code that is run in every step of the simulation

It also includes an optional method you may want to implement in your subclass:

• msg_received(): Code that is run when a robot’s successfully sends a message to another robot.

In general, you will likely want to implement your own robots with an additional two layers of subclasses. This allows
you to separate the physical robot platform you are representing from the algorithsm/code you are running on that
platform.

First, you create a subclass that represents the physical robot system you are representing, such as a Turtlebot or
Kilobot. This implements abstract methods that are properties of the physical system, such as the communication
range (comm_criteria()) and movement restrictions (move()). This is still an abstract class.

Second, you create a subclass of your new class for implementing specific algorithms or code on your new robot
platform. Here you will implement message handling (receive_msg() and optionally msg_received()) and
onboard code (init() and loop()).

Custom robot example

Below is an example of the structure described above to create a simple robot that bounces around the arena.

First, we create , a robot with a circular communication radius of 5 grid cells that can move in the cardinal directions
to any of four cells surrounding it. This robot is already provided in the library as GridRobot; you need not re-
implement this robot platform if it meets your needs.

1 from typing import Tuple
2

3 from .robot import Robot
4 # If you are building your own Robot class, you would instead use:
5 # from gridsim import Robot
6

7

8 class GridRobot(Robot):
9 STAY = 0

10 UP = 1
11 DOWN = 2
12 LEFT = 3
13 RIGHT = 4
14 DIRS = [STAY, UP, DOWN, LEFT, RIGHT]
15

16 def __init__(self, x: int, y: int, comm_range: float = 5):
17 """
18 Create a robot that moves along the cardinal directions. Optionally, you
19 can specify a communication range for the robots.
20

21 Parameters
22 ----------
23 x : int
24 Starting x position (grid cell) of the robot
25 y : int
26 Starting y position (grid cell) of the robot
27 comm_range : float, optional
28 Communication radius (in grid cells) of the robot, by default 5
29 """
30 # Run all of the initialization for the default Robot class, including
31 # setting the starting position
32 super().__init__(x, y)

(continues on next page)

8 Chapter 1. Index

https://www.turtlebot.com/
https://www.k-team.com/mobile-robotics-products/kilobot

Gridsim, Release 0.1.3

(continued from previous page)

33

34 self._comm_range = comm_range
35 # Start with the robot stationary
36 self._move_cmd = GridRobot.STAY
37

38 def set_direction(self, dir: int):
39 """
40 Helper function to set the direction the robot will move. Note that this
41 will persist (the robot will keep moving) until the direction is
42 changed.
43

44 Parameters
45 ----------
46 dir : int
47 Direction to move, one of UP, DOWN, LEFT, RIGHT, or STAY
48

49 Raises
50 ------
51 ValueError
52 If given direction is not one of UP, DOWN, LEFT, RIGHT, or STAY
53 """
54 if dir in GridRobot.DIRS:
55 self._move_cmd = dir
56 else:
57 raise ValueError('Invalid movement direction "{}"'.format(dir))
58

59 def move(self) -> Tuple[int, int]:
60 """
61 Determine the cell the Robot will move to, based on the direction set in
62 by :meth:`~gridsim.grid_robot.GridRobot.set_motors`.
63

64 Returns
65 -------
66 Tuple[int, int]
67 (x,y) grid cell the robot will move to, if possible/allowed
68 """
69 x, y = self.get_pos()
70 if self._move_cmd == GridRobot.UP:
71 y -= 1
72 elif self._move_cmd == GridRobot.DOWN:
73 y += 1
74 elif self._move_cmd == GridRobot.RIGHT:
75 x += 1
76 elif self._move_cmd == GridRobot.LEFT:
77 x -= 1
78 # else STAY, which keeps current position
79 return x, y
80

81 def comm_criteria(self, dist: int) -> bool:
82 """
83 Robots can communicate if their Euclidean distance is <= the radius
84 specified at initialization (by default, 5 cells)
85

86 Parameters
87 ----------
88 dist : int
89 Euclidean distance of the other robot with which to communicate

(continues on next page)

1.1. Getting Started 9

Gridsim, Release 0.1.3

(continued from previous page)

90

91 Returns
92 -------
93 bool
94 Whether distance is <= the communication radius
95 """
96 return dist <= self._comm_range

With our robot platform in place, we can now implement a Robot that implements whatever code we want the robot
to run. In this case, it’s a simple robot that chooses a random movement every 10 ticks and changes color when it first
communicates with other robots.

1 import random
2

3 from gridsim.grid_robot import GridRobot
4 import gridsim as gs
5

6

7 class RandomRobot(GridRobot):
8 # Change direction every 10 ticks
9 DIR_DURATION = 10

10

11 def init(self):
12 self.set_color(255, 0, 0)
13 self._msg_sent = False
14

15 # Next tick when Robot will change direction
16 self._next_dir_change = self.get_tick()
17

18 def receive_msg(self, msg: gs.Message, dist: float):
19 # This robot got a message from another robot
20 self._msg_sent = True
21

22 def loop(self):
23

24 # Change direction every DIR_DURATION ticks
25 tick = self.get_tick()
26 if tick >= self._next_dir_change:
27 new_dir = random.choice(GridRobot.DIRS)
28 self.set_direction(new_dir)
29 self._next_dir_change = tick + RandomRobot.DIR_DURATION
30

31 # Broadcast a test message to any robots nearby
32 msg = gs.Message(self.id, {'test': 'hello'})
33 self.set_tx_message(msg)
34

35 # Change color depending on whether messages have been sent or received
36 # Robot will be white when it has successfully sent & received a message
37 green = 255 * self._msg_sent
38 self.set_color(255, green, 0)

Notice that the abstraction layers mean that you have to write very little additional code to implement a new algorithm
for your robot.

10 Chapter 1. Index

Gridsim, Release 0.1.3

1.2 Class Reference

Each page contains details and full API reference for all the classes in the Gridsim library.

For an explanation of how to use all of it together, see Basic Usage.

1.2.1 World

The World is where all of the simulation happens. Robots are added to the World, and the Viewer and Logger refer to
a World to draw the simulation and save data.

Once the World is created and you have added your robots, you will likely only need to call the step() method.

class gridsim.world.World(width: int, height: int, robots: List[gridsim.robot.Robot] = [], al-
low_collisions: bool = True)

__init__(width: int, height: int, robots: List[gridsim.robot.Robot] = [], allow_collisions: bool =
True)

Create a World for simulating Robots in a grid world

Parameters

• width (int) – Width of the world (number of cells)

• height (int) – Height of the world (number of cells)

• robots (List[Robot], optional) – List of Robots to place in the World to start,
by default []. Additional robots can be added after initialization with the add_robot
method.

• allow_collisions (bool, optional) – Whether or not to allow Robots to exist
in the same grid cell, by default True

add_robot(robot: gridsim.robot.Robot)
Add a single robot to the World. Robots can also be added in bulk (as a list) when the World is created,
using the robots keyword.

Parameters robot (Robot) – Robot to add to the World

get_dimensions()→ Tuple[int, int]
Get the dimensions (in grid cells) of the World

Returns (width, height) of the World, in grid cells

Return type Tuple[int, int]

get_robots()→ pygame.sprite.Group
Get a list of all the robots in the World

Returns All Robots currently in the World

Return type pygame.sprite.Group

get_time()→ float
Get the current time of the World. At the moment, that’s just the number of ticks (time steps) since the
simulation started, since we’re in a discrete world.

Returns Number of ticks (steps) since simulation started

Return type float

1.2. Class Reference 11

Gridsim, Release 0.1.3

step()
Run a single step of the simulation. This moves the robots, manages the clock, and runs the robot con-
trollers.

1.2.2 Robots

Gridsim provides two levels of abstract robot classes. The first, Robot, is designed to allow a user full control over
their robot platform, specifying to communication criteria and allowed movements.

To get started faster, GridRobot implements a simple movement protocol and communication criterion, allowing
the user to quickly start implementing their own code on the GridRobot platform.

For details on extending the Robot classes to create your own, see Make your own Robot.

class gridsim.robot.Robot(x: int, y: int)
Base class for all robot classes

__init__(x: int, y: int)
Abstract robot base class for all Robots

Parameters

• x (int) – Starting x position (grid cell) of the robot

• y (int) – Starting y position (grid cell) of the robot

abstract comm_criteria(dist: int)→ bool
Criterion for whether message can be communicated (base on distance)

Parameters dist (int) – Distance between this robot and the other robot

Returns Whether or not the other robot is within communication range

Return type bool

distance(pos: Tuple[int, int])→ float
Get the Euclidean distance (in grid cells) between this robot and the specified (x, y) grid cell position.

Parameters pos (Tuple[int, int]) – (x, y) grid cell coordinate to get the distance to

Returns Euclidean distance of this robot from the given coordinate

Return type float

get_pos()→ Tuple[int, int]
Get the position of the robot in the grid

Returns (x, y) grid position of the robot, from the top left

Return type Tuple[int, int]

get_tick()→ int
Get the current tick of the robot (how many steps since the simulation started).

Returns Number of ticks since start of simulation

Return type int

get_tx_message()→ Message
Get the message queued for transmission (broadcast).

The message is set by the set_tx_message function

Returns Message to continuously broadcast

Return type Message

12 Chapter 1. Index

Gridsim, Release 0.1.3

get_world_dim()→ Tuple[int, int]
Get the dimensions of the World that this Robot is in, so it can plan to avoid hitting the boundaries.

Returns (width, height) dimensions of the world, in grid cells

Return type Tuple[int, int]

Raises ValueError – Cannot get dimensions if Robot is not in a World. Add it during creation
of a World or with add_robot().

id: int = None
Unique ID of the Robot

abstract init()
Robot-specific initialization that will be run when the robot is set up

abstract loop()
User-implemented loop operation (code the robot runs every loop)

abstract move()→ Tuple[int, int]
User-facing move command, essentially sending a request to move to a particular cell.

The robot will only make this move if it doesn’t violate any movement conditions (such as edge of arena
or, if enabled, collisions with other robots). Therefore, you do NOT need to implement any collision or
edge-of-arena detection in this function.

Returns (x, y) grid cell position the robot intends to move to

Return type Tuple[int, int]

msg_received()
This is called when a robot successfully sent its message (i.e., when another robot received its message.)

By default, this does nothing. You can override it in your robot class to execute some operation or set a
flag when a message is sent.

abstract receive_msg(msg: Message, dist: float)
Function called when the robot receives a message. This allows the specific robot implementation to
choose how to process the messages that it receives, asynchronously.

Parameters

• msg (Message) – Received message from another robot

• dist (float) – Distance of the sending robot from this robot

set_color(r: int, g: int, b: int)
Set the color of the robot (as shown in Viewer) with 8-bit RGB values

Parameters

• r (int) – Red channel [0, 255]

• g (int) – Green channel [0, 255]

• b (int) – Blue channel [0, 255]

Raises ValueError – If all values are not in the range [0, 255]

set_tx_message(msg: Message)
Set the message that will be continuously broadcast

Parameters msg (Message) – Message to send to anyone within range

class gridsim.grid_robot.GridRobot(x: int, y: int, comm_range: float = 5)

1.2. Class Reference 13

Gridsim, Release 0.1.3

__init__(x: int, y: int, comm_range: float = 5)
Create a robot that moves along the cardinal directions. Optionally, you can specify a communication
range for the robots.

Parameters

• x (int) – Starting x position (grid cell) of the robot

• y (int) – Starting y position (grid cell) of the robot

• comm_range (float, optional) – Communication radius (in grid cells) of the
robot, by default 5

comm_criteria(dist: int)→ bool
Robots can communicate if their Euclidean distance is <= the radius specified at initialization (by default,
5 cells)

Parameters dist (int) – Euclidean distance of the other robot with which to communicate

Returns Whether distance is <= the communication radius

Return type bool

move()→ Tuple[int, int]
Determine the cell the Robot will move to, based on the direction set in by set_motors().

Returns (x,y) grid cell the robot will move to, if possible/allowed

Return type Tuple[int, int]

set_direction(dir: int)
Helper function to set the direction the robot will move. Note that this will persist (the robot will keep
moving) until the direction is changed.

Parameters dir (int) – Direction to move, one of UP, DOWN, LEFT, RIGHT, or STAY

Raises ValueError – If given direction is not one of UP, DOWN, LEFT, RIGHT, or STAY

1.2.3 Viewer

The Viewer is a simple way to visualize your simulations. After creating the Viewer, just call draw() each step (or
less frequently) to see the current state of the World.

Note: The maximum Viewer refresh rate (set at creation with the display_rate argument) also limits the simu-
lation rate. If you want to run faster/higher-throughput simulations, don’t use the Viewer.

class gridsim.viewer.Viewer(world: gridsim.world.World, window_width: int = 1080, dis-
play_rate: int = 10, show_grid: bool = True)

__init__(world: gridsim.world.World, window_width: int = 1080, display_rate: int = 10, show_grid:
bool = True)

Create a Viewer to display the simulation of a World.

This is optional (for debugging and visualization); simulations can be run much faster if the Viewer is not
used.

Parameters

• world (World) – World to display

• window_width (int, optional) – Width (in pixels) of the window to display the
World, by default 1080

14 Chapter 1. Index

Gridsim, Release 0.1.3

• display_rate (int, optional) – How fast to update the view (ticks/s), by default
10. In each tick, robots will move by one cell, so keep this low to be able to interpret
what’s going on.

• show_grid (bool, optional) – Whether to show the underlying grid in the World,
by default True. If false, it’s blank.

draw()
Draw all of the robots in the world onto the background.

1.2.4 Configuration Parser

The ConfigParser is an optional class to help separate your code for experimental configurations by using YAML
files for configuration. This imposes very few restrictions on the way you set up your configuration files; it mostly
makes it easier to access their contents and save the configuration parameters with your data using the Logger.

This is useful for managing both values that are fixed through all experiments (e.g., dimensions of the arena) and
experimental values that vary between conditions (e.g., number of robots). The latter may be saved as an array and a
single value used for different conditions.

While the ConfigParser can load any valid YAML files, the largest restriction is what configuration parameter
types can be saved to log files. For details, see the log_config() documentation.

class gridsim.config_parser.ConfigParser(config_filename: str)
Class to handle YAML configuration files.

This can be directly passed to the log_config() to save all configuration values with the trial data.

__init__(config_filename: str)
Create a configuration parser to manage all of the parameters in a YAML configuration file.

Parameters config_filename (str) – Location and filename of the YAML config file

get(key: Optional[str] = None, default: Any = None)→ Any
Get a parameter value from the configuration, or get a dictionary of the parameters if no parameter name
(key) is specified.

Parameters

• key (Optional[str], optional) – Name of the parameter to retrieve, by default
None. If not specified, a dictionary of all parameters will be returned.

• default (Any, optional) – Default value to return if the key is not found in the
configuration, by default None

Returns Parameter value for the given key, or the default value is the key is not found. If no key
is given, a dictionary of all parameters is returned.

Return type Any

1.2. Class Reference 15

https://yaml.org/

Gridsim, Release 0.1.3

1.2.5 Logger

The logger provides an interface for easily saving time series data from many simulation trials, along with the param-
eters used for the simulation.

Data is logged in HDF5 (Hierarchical Data Format) files.

Data is stored by trial, in a hierarchy like a file structure, as shown below. Values in < > are determined by what you
actually log, but the params group and time dataset are always created.

log_file.h5
trial_<1>

params
<param_1>
<param_2>

<param_n>
time
<aggregator_1>
<aggregator_2>

<aggregator_n>
trial_<2>

trial_<n>

All values logged with log_param() and log_config() are saved in params.

Time series data is stored in datasets directly under the trial_<n> group. They are created by
add_aggregator(), and new values are added by log_state(). Calling this method also adds a value to
the time dataset, which corresponds to the World time at which the state was saved.

class gridsim.logger.Logger(world: gridsim.world.World, filename: str, trial_num: int, over-
write_trials: Optional[bool] = False)

__init__(world: gridsim.world.World, filename: str, trial_num: int, overwrite_trials: Optional[bool]
= False)

Create a Logger to save data to an HDF5 file, from a single simulation trial.

Note that this only creates the Logger with which you can save data. You must use the methods below to
actually save anything to the file with the Logger.

Parameters

• world (World) – World whose simulation data you want to save.

• filename (str) – Name of the HDF5 file to save data to (.hdf extension). If the
file does not exist, it will be created. If it does exist, it will be appended to (with the
overwriting caveat specified below)

• trial_num (int) – Trial number under which to save the data.

• overwrite_trials (Optional[bool], optional) – Whether to overwrite a
trial’s data if it already exists, by default False

add_aggregator(name: str, func: Callable[[List[gridsim.robot.Robot]], numpy.ndarray])
Add an aggregator function that will map from the list of all Robots in the world to a 1D array of floats.
This will be used for logging the state of the World; the output of the aggregator is one row in the HDF5
Dataset named with the name.

16 Chapter 1. Index

https://www.hdfgroup.org/solutions/hdf5/

Gridsim, Release 0.1.3

The function reduces the state of the Robots to a single or multiple values. It could map to one float per
robot (such as a state variable of each Robot) or a single value (length 1 array, such as an average value
over all Robots).

Because of Python’s dynamic typing, this does not validate whether the subclass of Robot has any parame-
ters or functions that are called by the aggregator. The user is responsible for adding any necessary checks
in the aggregator function.

Notes

The width of the aggregator table is set when this function is called, which is determined by the length of
the output of func. If the length depends on the number of Robots, all Robots should be added to the
World before adding any aggregators to the Logger.

The aggregator func will be applied to all robots in the world, regardless of type. However, if you have
multiple types of Robots in your World, you can make an aggregator that applies to one type by filtering
the robots by type within the func.

Parameters

• name (str) – Key that will be used to identify the aggregator results in the HDF5 log
file.

• func (Callable[[List[Robot]], np.ndarray]) – Function that maps from a
list of Robots to a 1D array to log some state of the Robots at the current time.

get_trial()→ int
Get the trial number that this Logger is logging

Returns Number of the current trial being logged

Return type int

log_config(config: gridsim.config_parser.ConfigParser, exclude: List[str] = [])
Save all of the parameters in the configuration.

Notes

Due to HDF5 limitations (and my own laziness), only the following datatypes can be saved in the HDF5
parameters:

• string

• integer

• float

• boolean

• list of integers and/or floats

Parameters

• config (ConfigParser) – Configuration loaded from a YAML file.

• exclude (List[str], optional) – Names (keys) of any configuration parameters
to exclude from the saved parameters. This can be useful for excluding an array of values
that vary by condition, and you want to only include the single value used in this instance.

1.2. Class Reference 17

Gridsim, Release 0.1.3

log_param(name: str, val: Union[str, int, float, bool, list])
Save a single parameter value. This is useful for saving fixed parameters that are not part of your configu-
ration file, and therefore not saved with log_config().

This has the same type restrictions for values as log_config().

Parameters

• name (str) – Name/key of the parameter value to save

• val (Any) – Value of the parameter to save. This can be a

log_state()
Save the output of all of the aggregator functions. If you have not added any aggregators with
log_state(), nothing will be saved by this function.

The runs each previously-added aggregator function and appends the result to the respective HDF5 Dataset.
It also saves the current time of the World to the time Dataset.

1.2.6 Messages

This provides a basic Message protocol for robot communication. Each message contains the ID of the sender and a
dictionary of message contents. The values of the message contents may be any type, so the receiver must know how
to process the data.

Additionally, Messages can optionally include a receiver type (rx_type). This is only needed if there are multiple
types of robots in the World, and you only want certain types of robots to receive the message.

If no arguments are provided when a Message is created, it creates a null message, which signals that the robot is not
broadcasting anything.

While it is possible to extend this class, the default Message class should meet most needs.

class gridsim.message.Message(tx_id: Optional[int] = None, content: Optional[Dict[str, Any]]
= None, rx_type: Type[gridsim.robot.Robot] = <class 'grid-
sim.robot.Robot'>)

__init__(tx_id: Optional[int] = None, content: Optional[Dict[str, Any]] = None, rx_type:
Type[gridsim.robot.Robot] = <class 'gridsim.robot.Robot'>)

A message sent by robots. Can be either a null (empty) message if no arguments are provided to the
constructor. Or it contains the sender’s ID, a dictionary of content, and (optionally) the type of robot that
receives the message.

Parameters

• tx_id (Optional[int], optional) – ID of the sending (transmitting) robot, by
default None

• content (Optional[Dict[str, Any]], optional) – Dictionary of message
keys and values, by default None. Keys must be strings, but values can be of any type
(incumbent on receiver for interpretation)

• rx_type (Type[Robot], optional) – Type of the receiving robot, by default
Robot (i.e., message will be processed by any Robot.)

get()→ Optional[Dict[str, Any]]
Get the contents of the message

Returns Dictionary of the message contents

Return type Optional[Dict[str, Any]]

18 Chapter 1. Index

Gridsim, Release 0.1.3

tx_id()→ Optional[int]
Get the ID (32-bit integer) of the robot that sent the message

Returns ID of the sending (transmitting) robot

Return type Optional[int]

1.3 Development

This is reference material for local development.

If you just want to use the library, you don’t need any of this.

1.3.1 Build Documentation

from the docs directory, run:

make html

Then open the documentation:

open _build/html/index.html

1.3.2 Build the distributable for PyPi

(From the PyPi tutorial)

Make sure the necessary dependencies are installed.

pip3 install --upgrade setuptools wheel twine

Build the project. From the project root folder, run:

python3 setup.py sdist bdist_wheel

Upload it to the testing index:

python3 -m twine upload --repository-url https://test.pypi.org/legacy/ dist/*

Upload it to the actual index:

python3 -m twine upload dist/*

1.3. Development 19

https://packaging.python.org/tutorials/packaging-projects/

Gridsim, Release 0.1.3

20 Chapter 1. Index

CHAPTER

TWO

ABOUT

Gridsim is a Python 3 library for simulating robots in a grid-based world. It has a simple, well-documented API,
making it easy to implement your own algorithms with minimal overhead.

Key features include:

• Viewer for debugging and visualizing your simulations

• Built-in data logging to HDF5 files

• Support for YAML configuration files

• Extendable robot classes to avoid repeating your code

• Comprehensive documentation and examples

21

Gridsim, Release 0.1.3

22 Chapter 2. About

CHAPTER

THREE

QUICK INSTALL

$ pip install gridsim

For more information and instructions, check out the documentation.

23

https://gridsim.readthedocs.io/en/latest/

Gridsim, Release 0.1.3

24 Chapter 3. Quick Install

CHAPTER

FOUR

LINKS

Documentation: Read the Docs

PyPi: gridsim

Source code: Github

25

https://gridsim.readthedocs.io/en/latest/
https://pypi.org/project/gridsim/
https://github.com/jtebert/gridsim

Gridsim, Release 0.1.3

26 Chapter 4. Links

CHAPTER

FIVE

CONTACT

If you have questions, or if you’ve done something interesting with this package, send me an email: ju-
lia@juliaebert.com.

If you find a problem or want something added to the library, open an issue on Github.

27

mailto:julia@juliaebert.com
mailto:julia@juliaebert.com
https://github.com/jtebert/gridsim/issues

Gridsim, Release 0.1.3

28 Chapter 5. Contact

INDEX

Symbols
__init__() (gridsim.config_parser.ConfigParser

method), 15
__init__() (gridsim.grid_robot.GridRobot method),

13
__init__() (gridsim.logger.Logger method), 16
__init__() (gridsim.message.Message method), 18
__init__() (gridsim.robot.Robot method), 12
__init__() (gridsim.viewer.Viewer method), 14
__init__() (gridsim.world.World method), 11

A
add_aggregator() (gridsim.logger.Logger method),

16
add_robot() (gridsim.world.World method), 11

C
comm_criteria() (gridsim.grid_robot.GridRobot

method), 14
comm_criteria() (gridsim.robot.Robot method), 12
ConfigParser (class in gridsim.config_parser), 15

D
distance() (gridsim.robot.Robot method), 12
draw() (gridsim.viewer.Viewer method), 15

G
get() (gridsim.config_parser.ConfigParser method), 15
get() (gridsim.message.Message method), 18
get_dimensions() (gridsim.world.World method),

11
get_pos() (gridsim.robot.Robot method), 12
get_robots() (gridsim.world.World method), 11
get_tick() (gridsim.robot.Robot method), 12
get_time() (gridsim.world.World method), 11
get_trial() (gridsim.logger.Logger method), 17
get_tx_message() (gridsim.robot.Robot method),

12
get_world_dim() (gridsim.robot.Robot method), 13
GridRobot (class in gridsim.grid_robot), 13

I
id (gridsim.robot.Robot attribute), 13
init() (gridsim.robot.Robot method), 13

L
log_config() (gridsim.logger.Logger method), 17
log_param() (gridsim.logger.Logger method), 17
log_state() (gridsim.logger.Logger method), 18
Logger (class in gridsim.logger), 16
loop() (gridsim.robot.Robot method), 13

M
Message (class in gridsim.message), 18
move() (gridsim.grid_robot.GridRobot method), 14
move() (gridsim.robot.Robot method), 13
msg_received() (gridsim.robot.Robot method), 13

R
receive_msg() (gridsim.robot.Robot method), 13
Robot (class in gridsim.robot), 12

S
set_color() (gridsim.robot.Robot method), 13
set_direction() (gridsim.grid_robot.GridRobot

method), 14
set_tx_message() (gridsim.robot.Robot method),

13
step() (gridsim.world.World method), 11

T
tx_id() (gridsim.message.Message method), 18

V
Viewer (class in gridsim.viewer), 14

W
World (class in gridsim.world), 11

29

	Index
	Getting Started
	Class Reference
	Development

	About
	Quick Install
	Links
	Contact
	Index

