
Gridsim
Release 0.3

Julia Ebert

Jun 29, 2020

CONTENTS

1 Index 1
1.1 Getting Started . 1
1.2 Class Reference . 12
1.3 Development . 21
1.4 Changelog . 22

2 About 25

3 Quick Install 27

4 Links 29

5 Contact 31

Index 33

i

ii

CHAPTER

ONE

INDEX

1.1 Getting Started

1.1.1 Installation

Note: This assumes that you’re already familiar with virtual environments and pip.

Virtual Environment Setup

Create a Python 3 virtual environment in the current location in subfolder called venv, then set it as the Python source.

$ python3 -m venv venv
$ source venv/bin/activate

You can deactivate the virtual environment with deactivate.

Quick Install

This package is available through pip, so it’s easy to install. With your virual environment active, run:

$ pip install gridsim

Within your own code, you can now import the Gridsim library components, such as:

import gridsim as gs

Create an empty World of 100 x 100 grid cells
my_world = gs.World(100, 100)

1

Gridsim, Release 0.3

Potential Issues

If you get an error when trying to install PyGame (possibly due to Python 3.8) that says sdl-config: not
found, you might need to install system dependencies because PyGame uses an older version (1.2) of SDL. For
Ubuntu-like systems, you can use the following:

$ sudo apt install libsdl-dev libsdl-image1.2-dev libsdl-mixer1.2-dev libsdl-ttf2.0-
→˓dev libportmidi-dev

1.1.2 Basic Usage

This will walk you through setting up your first robot and complete simulation.

On this page

• Test using built in examples

• Creating a simple robot

• A minimal simulation example

• Adding the Viewer

• Using configuration files

• Logging data

• Complete example

Test using built in examples

The examples are in the examples directory of the source code. In the near future, I’ll set up a way to run the examples
directly when you install the package.

Creating a simple robot

For more detailed information about developing custom robots, see Make your own Robot.

To start, we will only need to make a simple robot based on the GridRobot. This needs to implement three methods:

• receive_msg(): Code that is run when a robot receives a message

• init(): Code that is run once when the robot is created

• loop(): Code that is run in every step of the simulation

Create a file for your robot class. Let’s call it random_robot.py. Below is a simple Robot that moves randomly
and changes direction every 10 seconds. You can copy this or directly download random_robot.py

1 import random
2

3 from gridsim.grid_robot import GridRobot
4 import gridsim as gs
5

6

(continues on next page)

2 Chapter 1. Index

Gridsim, Release 0.3

(continued from previous page)

7 class RandomRobot(GridRobot):
8 # Change direction every 10 ticks
9 DIR_DURATION = 10

10

11 def init(self):
12 self.set_color(255, 0, 0)
13 self._msg_sent = False
14

15 # Next tick when Robot will change direction
16 self._next_dir_change = self.get_tick()
17

18 def receive_msg(self, msg: gs.Message, dist: float):
19 # This robot got a message from another robot
20 self._msg_sent = True
21

22 def loop(self):
23 # Change direction every DIR_DURATION ticks
24 tick = self.get_tick()
25 if tick >= self._next_dir_change:
26 new_dir = random.choice(GridRobot.DIRS)
27 self.set_direction(new_dir)
28 self._next_dir_change = tick + RandomRobot.DIR_DURATION
29

30 # Broadcast a test message to any robots nearby
31 msg = gs.Message(self.id, {'test': 'hello'})
32 self.set_tx_message(msg)
33

34 # Sample the environment at the current location
35 c = self.sample()
36

37 # Change color depending on whether messages have been sent or received
38 # Robot will be white when it has successfully sent & received a message
39 blue = 255 * self._msg_sent
40 # self.set_color(255, green, 0)
41 self.set_color(255-c[0], 255-c[1], blue)

A minimal simulation example

To run a simulation, you need to create a couple of robots, place them in a World. Then you call the step() method
to execute you simulation step-by-step. step() will handle running all of the robots’ code, as well as communication
and movement.

We also want give our Robots something to sense by adding en environment to the World. An environment here is
represented with an image. (You’ll see what this looks like in the next step.) In each cell, the Robots can sense the
color of the cell (i.e., the RGB pixel value) at that location with the sample() method. If you set up the environment
with an image whose resolution doesn’t match the grid dimensions, it will be rescaled, possibly stretching the image.
To avoid any surprises, you should use an image whose resolution matches your grid dimensions (e.g., for a 50 × 50
grid, use a 50px × 50px image).

Use the code below or download minimal_simulation.py and the example environment ex_env.png.

1 import gridsim as gs
2

3 from random_robot import RandomRobot
4

(continues on next page)

1.1. Getting Started 3

Gridsim, Release 0.3

(continued from previous page)

5

6 def main():
7 grid_width = 50 # Number of cells for the width & height of the world
8 num_robots = 5
9 num_steps = 100 # simulation steps to run

10

11 # Create a few robots to place in your world
12 robots = []
13 for n in range(num_robots):
14 robots.append(RandomRobot(grid_width/2 - n*2,
15 grid_width/2 - n*2))
16

17 # Create a 50 x 50 World with the Robots
18 world = gs.World(grid_width, grid_width,
19 robots=robots,
20 environment="ex_env.png")
21

22 # Run the simulation
23 for n in range(num_steps):
24 # Execute a simulation step
25 world.step()
26 # To make sure it works, print the tick (world time)
27 print('Time:', world.get_time())
28

29 print('SIMULATION FINISHED')
30

31

32 if __name__ == '__main__':
33 # Run the simulation if this program is called directly
34 main()

With these files and random_robot.py in the same directory, and gridsim installed, you should be able to run
the code with:

$ python3 minimal_simulation.py

Adding the Viewer

With that simple example, you have no way to see what the robots are doing. For that, we add a Viewer. This
requires adding only two lines of code to our minimal simulation above.

Use the code below or download viewer_simulation.py.

1 import gridsim as gs
2

3 from random_robot import RandomRobot
4

5

6 def main():
7 grid_width = 50 # Number of cells for the width & height of the world
8 num_robots = 5
9 num_steps = 100 # simulation steps to run

10

11 # Create a few robots to place in your world
12 robots = []

(continues on next page)

4 Chapter 1. Index

Gridsim, Release 0.3

(continued from previous page)

13 for n in range(num_robots):
14 robots.append(RandomRobot(grid_width/2 - n*2,
15 grid_width/2 - n*2))
16

17 # Create a 50 x 50 World with the Robots
18 world = gs.World(grid_width, grid_width,
19 robots=robots,
20 environment="ex_env.png")
21

22 # Create a Viewer to display the World
23 viewer = gs.Viewer(world)
24

25 # Run the simulation
26 for n in range(num_steps):
27 # Execute a simulation step
28 world.step()
29

30 # Draw the world
31 viewer.draw()
32

33 # To make sure it works, print the tick (world time)
34 print('Time:', world.get_time())
35

36 print('SIMULATION FINISHED')
37

38

39 if __name__ == '__main__':
40 # Run the simulation if this program is called directly
41 main()

Notice that adding the Viewer slows down the time to complete the simulation, because the display rate of the Viewer
limits the simulation rate. If you want to run lots of simulations, turn off your Viewer.

Using configuration files

Gridsim also provides the ConfigParser for using YAML configuration files. This simplifies loading parameters
and (as described in the next section) saving parameters with simulation results data.

The ConfigParser is un-opinionated; it doesn’t place any restrictions on what your configuration files look like,
as long as they’re valid YAML files.

Compared to our minimal_simulation.py, we only need one line to create our ConfigParser, from which
we can retrieve any parameter values.

Use the code below or download config_simulation.py and YAML configuration file simple_config.
yml.

1 import gridsim as gs
2

3 from random_robot import RandomRobot
4

5

6 def main():
7 config = gs.ConfigParser('simple_config.yml')
8 print(config.get('name'))
9 grid_width = config.get('grid_width')

(continues on next page)

1.1. Getting Started 5

Gridsim, Release 0.3

(continued from previous page)

10 num_robots = config.get('num_robots')
11 # You can specify a default value in case a parameter isn't in the
12 # configuration file
13 num_steps = config.get('num_steps', default=100)
14

15 # Create a few robots to place in your world
16 robots = []
17 # Configuration values can also be lists, not just single values.
18 x_pos = config.get('robot_x_pos')
19 for n in range(num_robots):
20 robots.append(RandomRobot(x_pos[n],
21 grid_width/2 - n*2))
22

23 # Create a 50 x 50 World with the Robots
24 world = gs.World(grid_width, grid_width, robots=robots)
25

26 # Run the simulation
27 for n in range(num_steps):
28 # Execute a simulation step
29 world.step()
30 # To make sure it works, print the tick (world time)
31 print('Time:', world.get_time())
32

33 print('SIMULATION FINISHED')
34

35

36 if __name__ == '__main__':
37 # Run the simulation if this program is called directly
38 main()

Logging data

Gridsim has a built-in Logger, designed to easily save data from your simulations to HDF5 files. This allows you to
store complex data and simulation configurations together in one place. HDF5 files are also easy to read and write in
many different programming languages.

There are three main ways to save data to your log files:

• Save the parameters in your configuration with log_config(). (Note that not all data types can be saved
with log_config. See its documentation for more details.)

• Save a single parameter (that’s not in your configuration file) with log_param()

• Save the state of your simulation/robots with log_state(). (This requires some setup.)

In order to log the state of the World, you first need to tell the Logger what you want to save about the log_state,
this function is called and the result is added to your dataset. You can add as many aggregators as you want, each with
their own name.

We can extend our config_simulation.py to show the three types of logging described above. Use the code
below or download logger_simulation.py.

1 import gridsim as gs
2 from typing import List
3 import numpy as np
4 from datetime import datetime
5

(continues on next page)

6 Chapter 1. Index

Gridsim, Release 0.3

(continued from previous page)

6 from random_robot import RandomRobot
7

8

9 def green_agg(robots: List[gs.Robot]) -> np.ndarray:
10 """
11 This is a dummy aggregator function (for demonstration) that just saves
12 the value of each robot's green color channel
13 """
14 out_arr = np.zeros([len(robots)])
15 for i, r in enumerate(robots):
16 out_arr[i] = r._color[1]
17

18 return out_arr
19

20

21 def main():
22 config = gs.ConfigParser('simple_config.yml')
23 print(config.get('name'))
24 grid_width = config.get('grid_width')
25 num_robots = config.get('num_robots')
26 # You can specify a default value in case a parameter isn't in the
27 # configuration file
28 num_steps = config.get('num_steps', default=100)
29

30 # Create a few robots to place in your world
31 robots = []
32 # Configuration values can also be lists, not just single values.
33 x_pos = config.get('robot_x_pos')
34 for n in range(num_robots):
35 robots.append(RandomRobot(x_pos[n],
36 grid_width/2 - n*2))
37

38 # Create a 50 x 50 World with the Robots
39 world = gs.World(grid_width, grid_width, robots=robots)
40

41 # Logger
42 trial_num = config.get('trial_num', default=1)
43 # Create a logger for this world that saves to the `test.h5` file
44 logger = gs.Logger(world, 'test.h5', trial_num=trial_num,
45 overwrite_trials=True)
46 # Tell the logger to run the `green_agg` function every time that
47 # `log_state` is called
48 logger.add_aggregator('green', green_agg)
49 # Save the contents of the configuration, but leave out the 'name' parameter
50 logger.log_config(config, exclude='name')
51 # Save the date/time that the simulation was run
52 logger.log_param('date', str(datetime.now()))
53

54 # Run the simulation
55 for n in range(num_steps):
56 # Execute a simulation step
57 world.step()
58

59 # Log the state every step
60 logger.log_state()
61

62 # To make sure it works, print the tick (world time)
(continues on next page)

1.1. Getting Started 7

Gridsim, Release 0.3

(continued from previous page)

63 print('Time:', world.get_time())
64

65 print('SIMULATION FINISHED')
66

67

68 if __name__ == '__main__':
69 # Run the simulation if this program is called directly
70 main()

Complete example

Most simulations will involve all of these components, and multiple trials. You can download a complete, detailed
example here: complete_simulation.py, as well as a corresponding YAML configuration file: ex_config.
yml

Here, the configuration file is used as a command line argument, so it’s easy to switch what configuration file you use.
Run it like this:

$ python3 complete_simulation.py ex_config.yml

1.1.3 Make your own Robot

Note: This assumes familiarity with object-oriented programming (particularly inheritance and abstract classes).

The Gridsim library provides a Robot class that manages underlying behavior and drawing of robots, making it easy
for you to quickly implement your own functionality and algorithms.

In fact, the default Robot class is an abstract class; you must implement your own Robot subclass. There are five
abstract Robot methods that you must implement in your own class. (Inputs and outputs are not shown.)

• move(): Step-wise movement of the robot on the grid

• comm_criteria(): Distance-based criteria for whether or not another robot is within communication range
of this robot.

• receive_msg(): Code that is run when a robot receives a message

• init(): Code that is run once when the robot is created

• loop(): Code that is run in every step of the simulation

It also includes an optional method you may want to implement in your subclass:

• msg_received(): Code that is run when a robot’s successfully sends a message to another robot.

In general, you will likely want to implement your own robots with an additional two layers of subclasses, as seen in
the graph below. This allows you to separate the physical robot platform you are representing from the algorithms/code
you are running on that platform.

8 Chapter 1. Index

Gridsim, Release 0.3

Robot Platforms

gridsim.Robot

gridsim.GridRobot
YourRobot

Custom Robot

YourAlgorithm

YourRobot running custom algorithm

RandomRobot

GridRobot doing random movement

AnotherAlgorithm

GridRobot running different code

First, you create a subclass that represents the physical robot system you are representing (such as a Turtlebot or
Kilobot). This is still an abstract class. It implements abstract methods that are properties of the physical system,
such as the communication range (comm_criteria()) and movement restrictions (move()). Gridsim include the
GridRobot as a simple robot platform. You can also create your down, as in the YourRobot above.

Second, you create a subclass of your new class for implementing specific algorithms or code on your new robot
platform. Here you will implement message handling (receive_msg() and optionally msg_received()) and
onboard code (init() and loop()). You can have multiple subclasses of your platform to run different code on
the same platform, such as RandomRobot (created below as an example) and AnotherAlgorithm.

Custom robot example

Below is an example of the structure described above to create a simple robot that bounces around the arena.

First, we create , a robot with a circular communication radius of 5 grid cells that can move in the cardinal directions
to any of four cells surrounding it. This robot is already provided in the library as GridRobot; you need not re-
implement this robot platform if it meets your needs.

1 from typing import Tuple
2

3 from .robot import Robot
4 # If you are building your own Robot class, you would instead use:
5 # from gridsim import Robot
6

7

8 class GridRobot(Robot):
9 STAY = 'stay'

10 UP = 'up'
11 DOWN = 'down'
12 LEFT = 'left'
13 RIGHT = 'right'
14 DIRS = [STAY, UP, DOWN, LEFT, RIGHT]
15

16 def __init__(self, x: int, y: int, comm_range: float = 5):
17 """

(continues on next page)

1.1. Getting Started 9

https://www.turtlebot.com/
https://www.k-team.com/mobile-robotics-products/kilobot

Gridsim, Release 0.3

(continued from previous page)

18 Create a robot that moves along the cardinal directions. Optionally, you
19 can specify a communication range for the robots.
20

21 Parameters
22 ----------
23 x : int
24 Starting x position (grid cell) of the robot
25 y : int
26 Starting y position (grid cell) of the robot
27 comm_range : float, optional
28 Communication radius (in grid cells) of the robot, by default 5
29 """
30 # Run all of the initialization for the default Robot class, including
31 # setting the starting position
32 super().__init__(x, y)
33

34 self._comm_range = comm_range
35 # Start with the robot stationary
36 self._move_cmd = GridRobot.STAY
37

38 def set_direction(self, dir: str):
39 """
40 Helper function to set the direction the robot will move. Note that this
41 will persist (the robot will keep moving) until the direction is
42 changed.
43

44 Parameters
45 ----------
46 dir : int
47 Direction to move, one of ``GridRobot.UP``, ``GridRobot.DOWN``,
48 ``GridRobot.LEFT``, ``GridRobot.RIGHT``, or ``GridRobot.STAY``
49

50 Raises
51 ------
52 ValueError
53 If given direction is not one of `GridRobot.UP``,
54 ``GridRobot.DOWN``, ``GridRobot.LEFT``, ``GridRobot.RIGHT``, or
55 ``GridRobot.STAY``
56 """
57 if dir in GridRobot.DIRS:
58 self._move_cmd = dir
59 else:
60 raise ValueError('Invalid movement direction "{}"'.format(dir))
61

62 def move(self) -> Tuple[int, int]:
63 """
64 Determine the cell the Robot will move to, based on the direction set in
65 by :meth:`~gridsim.grid_robot.GridRobot.set_motors`.
66

67 Returns
68 -------
69 Tuple[int, int]
70 (x,y) grid cell the robot will move to, if possible/allowed
71 """
72 x, y = self.get_pos()
73 if self._move_cmd == GridRobot.UP:
74 y -= 1

(continues on next page)

10 Chapter 1. Index

Gridsim, Release 0.3

(continued from previous page)

75 elif self._move_cmd == GridRobot.DOWN:
76 y += 1
77 elif self._move_cmd == GridRobot.RIGHT:
78 x += 1
79 elif self._move_cmd == GridRobot.LEFT:
80 x -= 1
81 # else STAY, which keeps current position
82 return x, y
83

84 def comm_criteria(self, dist: int) -> bool:
85 """
86 Robots can communicate if their Euclidean distance is <= the radius
87 specified at initialization (by default, 5 cells)
88

89 Parameters
90 ----------
91 dist : int
92 Euclidean distance of the other robot with which to communicate
93

94 Returns
95 -------
96 bool
97 Whether distance is <= the communication radius
98 """
99 return dist <= self._comm_range

With our robot platform in place, we can now implement a Robot that implements whatever code we want the robot
to run. In this case, it’s a simple robot that chooses a random movement every 10 ticks. Its color is based on the color
it samples at its current location, and whether it has communicated with another robot.

1 import random
2

3 from gridsim.grid_robot import GridRobot
4 import gridsim as gs
5

6

7 class RandomRobot(GridRobot):
8 # Change direction every 10 ticks
9 DIR_DURATION = 10

10

11 def init(self):
12 self.set_color(255, 0, 0)
13 self._msg_sent = False
14

15 # Next tick when Robot will change direction
16 self._next_dir_change = self.get_tick()
17

18 def receive_msg(self, msg: gs.Message, dist: float):
19 # This robot got a message from another robot
20 self._msg_sent = True
21

22 def loop(self):
23 # Change direction every DIR_DURATION ticks
24 tick = self.get_tick()
25 if tick >= self._next_dir_change:
26 new_dir = random.choice(GridRobot.DIRS)

(continues on next page)

1.1. Getting Started 11

Gridsim, Release 0.3

(continued from previous page)

27 self.set_direction(new_dir)
28 self._next_dir_change = tick + RandomRobot.DIR_DURATION
29

30 # Broadcast a test message to any robots nearby
31 msg = gs.Message(self.id, {'test': 'hello'})
32 self.set_tx_message(msg)
33

34 # Sample the environment at the current location
35 c = self.sample()
36

37 # Change color depending on whether messages have been sent or received
38 # Robot will be white when it has successfully sent & received a message
39 blue = 255 * self._msg_sent
40 # self.set_color(255, green, 0)
41 self.set_color(255-c[0], 255-c[1], blue)

Notice that the abstraction layers mean that you have to write very little additional code to implement a new algorithm
for your robot.

1.2 Class Reference

Each page contains details and full API reference for all the classes in the Gridsim library.

For an explanation of how to use all of it together, see Basic Usage.

1.2.1 World

The World is where all of the simulation happens. Robots are added to the World, and the Viewer and Logger refer to
a World to draw the simulation and save data.

Once the World is created and you have added your robots, you will likely only need to call the step() method.

class gridsim.world.World(width: int, height: int, robots: List[gridsim.robot.Robot] = [], environ-
ment: str = '', allow_collisions: bool = True)

__init__(width: int, height: int, robots: List[gridsim.robot.Robot] = [], environment: str = '', al-
low_collisions: bool = True)

Create a World for simulating Robots in a grid world

Parameters

• width (int) – Width of the world (number of cells)

• height (int) – Height of the world (number of cells)

• robots (List[Robot], optional) – List of Robots to place in the World to start,
by default []. Additional robots can be added after initialization with the add_robot
method.

• environment (str, optional) – Filename of an image to use for a background
in the World. Robots will be able to sense the color of this image. If the environment
dimensions do not match the World dimensions, the image will be re-scaled (and possibly
stretched). We recommend using an image with the same resolution as your grid size.

• allow_collisions (bool, optional) – Whether or not to allow Robots to exist
in the same grid cell, by default True

12 Chapter 1. Index

Gridsim, Release 0.3

add_environment(img_filename: str)
Add an image to the environment for the Robots to sense. This will also be shown by the Viewer.

Because sensing is cell-based, images will be scaled to the size of the World’s grid. If the aspect ratio does
not match, images will be stretched. To avoid any surprises from rescaling, we recommend using an image
with the same resolution as your grid size. (e.g., if you have a 50x50 grid, use a 50px x 50px image.)

Parameters img_filename (str) – Filename of the RGB image to use as a background
environment. Any transparency (alpha) is ignored by the robot sensing.

add_robot(robot: gridsim.robot.Robot)
Add a single robot to the World. Robots can also be added in bulk (as a list) when the World is created,
using the robots keyword.

Parameters robot (Robot) – Robot to add to the World

get_dimensions()→ Tuple[int, int]
Get the dimensions (in grid cells) of the World

Returns (width, height) of the World, in grid cells

Return type Tuple[int, int]

get_robots()→ pygame.sprite.Group
Get a list of all the robots in the World

Returns All Robots currently in the World

Return type pygame.sprite.Group

get_time()→ float
Get the current time of the World. At the moment, that’s just the number of ticks (time steps) since the
simulation started, since we’re in a discrete world.

Returns Number of ticks (steps) since simulation started

Return type float

step()
Run a single step of the simulation. This moves the robots, manages the clock, and runs the robot con-
trollers.

tag(pos: Tuple[int, int], color: Tuple[int, int, int])
Tag a cell position in the World with an RGB color to display in the viewer. There will be a semi-
transparent overlay with the given color in that cell in the World. This is primarily for use with the Viewer,
to visualize what has been sampled in the World.

Parameters

• pos (Tuple[int, int]) – (x, y) grid cell position to mark

• color (Tuple[int, int, int]) – (R, G, B) color to set as the cell’s overlay color
(each in the range [0, 255])

1.2. Class Reference 13

Gridsim, Release 0.3

1.2.2 Robots

Gridsim provides two levels of abstract robot classes. The first, Robot, is designed to allow a user full control over
their robot platform, specifying to communication criteria and allowed movements.

To get started faster, GridRobot implements a simple movement protocol and communication criterion, allowing
the user to quickly start implementing their own code on the GridRobot platform.

For details on extending the Robot classes to create your own, see Make your own Robot.

class gridsim.robot.Robot(x: int, y: int)
Base class for all robot classes

__init__(x: int, y: int)
Abstract robot base class for all Robots

Parameters

• x (int) – Starting x position (grid cell) of the robot

• y (int) – Starting y position (grid cell) of the robot

abstract comm_criteria(dist: int)→ bool
Criterion for whether message can be communicated (base on distance)

Parameters dist (int) – Distance between this robot and the other robot

Returns Whether or not the other robot is within communication range

Return type bool

distance(pos: Tuple[int, int])→ float
Get the Euclidean distance (in grid cells) between this robot and the specified (x, y) grid cell position.

If you want to change the distance metric (e.g., use Manhattan distance instead), you can override this
method when you extend the Robot class.

Parameters pos (Tuple[int, int]) – (x, y) grid cell coordinate to get the distance to

Returns Euclidean distance of this robot from the given coordinate

Return type float

get_pos()→ Tuple[int, int]
Get the position of the robot in the grid

Returns (x, y) grid position of the robot, from the top left

Return type Tuple[int, int]

get_tick()→ int
Get the current tick of the robot (how many steps since the simulation started).

Returns Number of ticks since start of simulation

Return type int

get_world_dim()→ Tuple[int, int]
Get the dimensions of the World that this Robot is in, so it can plan to avoid hitting the boundaries.

Returns (width, height) dimensions of the world, in grid cells

Return type Tuple[int, int]

Raises ValueError – Cannot get dimensions if Robot is not in a World. Add it during creation
of a World or with add_robot().

14 Chapter 1. Index

Gridsim, Release 0.3

id: int = None
Unique ID of the Robot

abstract init()
Robot-specific initialization that will be run when the robot is set up.

This is called when a Robot is added to a :class:gridsim.world.World`.

abstract loop()
User-implemented loop operation (code the robot runs every loop)

abstract move()→ Tuple[int, int]
User-facing move command, essentially sending a request to move to a particular cell.

The robot will only make this move if it doesn’t violate any movement conditions (such as edge of arena
or, if enabled, collisions with other robots). Therefore, you do NOT need to implement any collision or
edge-of-arena detection in this function.

Returns (x, y) grid cell position the robot intends to move to

Return type Tuple[int, int]

msg_received()
This is called when a robot successfully sent its message (i.e., when another robot received its message.)

By default, this does nothing. You can override it in your robot class to execute some operation or set a
flag when a message is sent.

abstract receive_msg(msg: Message, dist: float)
Function called when the robot receives a message. This allows the specific robot implementation to
choose how to process the messages that it receives, asynchronously.

Parameters

• msg (Message) – Received message from another robot

• dist (float) – Distance of the sending robot from this robot

sample(pos: Optional[Tuple[int, int]] = None, tag: Optional[Tuple[int, int, int]] = None)→ Tuple[int,
int, int]

Sample the RGB environment at the given cell location, or (if no pos given) and the robot’s current
position.

This allows you to sample any location in the World, but this is probably cheating. The robot platform
you’re modeling likely doesn’t have such extensive sensing capabilities. This function is provided so that
you can define any custom sensing capabilities (such as within a radius around your robot, or a line of
sight sensor).

Parameters

• pos (Optional[Tuple[int, int]]) – (x, y) grid cell position of the World to
sample. If not specified, the current robot position is sampled.

• tag (Optional[Tuple[int, int, int]], optional) – RGB color to tag
this position in the World, by default None. If not provided, the cell in the World won’t be
tagged with any color. Otherwise, there will be a semi-transparent overlay with the given
color in that cell in the World. This is primarily for use with the Viewer, to visualize what
has been sampled in the World.

Returns (red, green, blue) color at the given coordinate in the range [0, 255]. If the world does
not have an environment set, this will return (0, 0, 0)

Return type Tuple

1.2. Class Reference 15

Gridsim, Release 0.3

set_color(r: int, g: int, b: int)
Set the color of the robot (as shown in Viewer) with 8-bit RGB values

Parameters

• r (int) – Red channel [0, 255]

• g (int) – Green channel [0, 255]

• b (int) – Blue channel [0, 255]

Raises ValueError – If all values are not in the range [0, 255]

set_tx_message(msg: Message)
Set the message that will be continuously broadcast. To enable communication, use this function to send a
non-empty Message. (i.e., a message that doesn’t use the empty constructor.)

Parameters msg (Message) – Message to send to anyone within range

class gridsim.grid_robot.GridRobot(x: int, y: int, comm_range: float = 5)

__init__(x: int, y: int, comm_range: float = 5)
Create a robot that moves along the cardinal directions. Optionally, you can specify a communication
range for the robots.

Parameters

• x (int) – Starting x position (grid cell) of the robot

• y (int) – Starting y position (grid cell) of the robot

• comm_range (float, optional) – Communication radius (in grid cells) of the
robot, by default 5

comm_criteria(dist: int)→ bool
Robots can communicate if their Euclidean distance is <= the radius specified at initialization (by default,
5 cells)

Parameters dist (int) – Euclidean distance of the other robot with which to communicate

Returns Whether distance is <= the communication radius

Return type bool

move()→ Tuple[int, int]
Determine the cell the Robot will move to, based on the direction set in by set_motors().

Returns (x,y) grid cell the robot will move to, if possible/allowed

Return type Tuple[int, int]

set_direction(dir: str)
Helper function to set the direction the robot will move. Note that this will persist (the robot will keep
moving) until the direction is changed.

Parameters dir (int) – Direction to move, one of GridRobot.UP, GridRobot.DOWN,
GridRobot.LEFT, GridRobot.RIGHT, or GridRobot.STAY

Raises ValueError – If given direction is not one of GridRobot.UP`, GridRobot.DOWN,
GridRobot.LEFT, GridRobot.RIGHT, or GridRobot.STAY

16 Chapter 1. Index

Gridsim, Release 0.3

1.2.3 Viewer

The Viewer is a simple way to visualize your simulations. After creating the Viewer, just call draw() each step (or
less frequently) to see the current state of the World.

Note: The maximum Viewer refresh rate (set at creation with the display_rate argument) also limits the simu-
lation rate. If you want to run faster/higher-throughput simulations, don’t use the Viewer.

class gridsim.viewer.Viewer(world: gridsim.world.World, window_width: int = 1080, dis-
play_rate: int = 10, show_grid: bool = False)

__init__(world: gridsim.world.World, window_width: int = 1080, display_rate: int = 10, show_grid:
bool = False)

Create a Viewer to display the simulation of a World.

This is optional (for debugging and visualization); simulations can be run much faster if the Viewer is not
used.

Parameters

• world (World) – World to display

• window_width (int, optional) – Width (in pixels) of the window to display the
World, by default 1080

• display_rate (int, optional) – How fast to update the view (ticks/s), by default
10. In each tick, robots will move by one cell, so keep this low to be able to interpret
what’s going on.

• show_grid (bool, optional) – Whether to show the underlying grid in the World,
by default False.

draw()
Draw all of the robots in the World into the World and its environment.

This will also draw the World’s environment (if one is set) and any tagged cells in the World.

1.2.4 Configuration Parser

The ConfigParser is an optional class to help separate your code for experimental configurations by using YAML
files for configuration. This imposes very few restrictions on the way you set up your configuration files; it mostly
makes it easier to access their contents and save the configuration parameters with your data using the Logger.

This is useful for managing both values that are fixed through all experiments (e.g., dimensions of the arena) and
experimental values that vary between conditions (e.g., number of robots). The latter may be saved as an array and a
single value used for different conditions.

While the ConfigParser can load any valid YAML files, the largest restriction is what configuration parameter
types can be saved to log files. For details, see the log_config() documentation.

class gridsim.config_parser.ConfigParser(config_filename: str)
Class to handle YAML configuration files.

This can be directly passed to the log_config() to save all configuration values with the trial data.

__init__(config_filename: str)
Create a configuration parser to manage all of the parameters in a YAML configuration file.

Parameters config_filename (str) – Location and filename of the YAML config file

1.2. Class Reference 17

https://yaml.org/

Gridsim, Release 0.3

get(key: Optional[str] = None, default: Any = None)→ Any
Get a parameter value from the configuration, or get a dictionary of the parameters if no parameter name
(key) is specified.

Note that if no default is specified and the key is not found in the configuration file, this will return None
instead of rasing an exception.

Parameters

• key (Optional[str], optional) – Name of the parameter to retrieve, by default
None. If not specified, a dictionary of all parameters will be returned.

• default (Any, optional) – Default value to return if the key is not found in the
configuration, by default None

Returns Parameter value for the given key, or the default value is the key is not found. If no key
is given, a dictionary of all parameters is returned.

Return type Any

1.2.5 Logger

The logger provides an interface for easily saving time series data from many simulation trials, along with the param-
eters used for the simulation.

Data is logged in HDF5 (Hierarchical Data Format) files.

Data is stored by trial, in a hierarchy like a file structure, as shown below. Values in < > are determined by what you
actually log, but the params group and time dataset are always created.

log_file.h5
trial_<1>

params
<param_1>
<param_2>

<param_n>
time
<aggregator_1>
<aggregator_2>

<aggregator_n>
trial_<2>

trial_<n>

All values logged with log_param() and log_config() are saved in params.

Time series data is stored in datasets directly under the trial_<n> group. They are created by
add_aggregator(), and new values are added by log_state(). Calling this method also adds a value to
the time dataset, which corresponds to the World time at which the state was saved.

class gridsim.logger.Logger(world: gridsim.world.World, filename: str, trial_num: int, over-
write_trials: Optional[bool] = False)

__init__(world: gridsim.world.World, filename: str, trial_num: int, overwrite_trials: Optional[bool]
= False)

Create a Logger to save data to an HDF5 file, from a single simulation trial.

18 Chapter 1. Index

https://www.hdfgroup.org/solutions/hdf5/

Gridsim, Release 0.3

Note that this only creates the Logger with which you can save data. You must use the methods below to
actually save anything to the file with the Logger.

Parameters

• world (World) – World whose simulation data you want to save.

• filename (str) – Name of the HDF5 file to save data to (.hdf extension). If the
file does not exist, it will be created. If it does exist, it will be appended to (with the
overwriting caveat specified below)

• trial_num (int) – Trial number under which to save the data.

• overwrite_trials (Optional[bool], optional) – Whether to overwrite a
trial’s data if it already exists, by default False

add_aggregator(name: str, func: Callable[[List[gridsim.robot.Robot]], numpy.ndarray])
Add an aggregator function that will map from the list of all Robots in the world to a 1D array of floats.
This will be used for logging the state of the World; the output of the aggregator is one row in the HDF5
Dataset named with the name.

The function reduces the state of the Robots to a single or multiple values. It could map to one float per
robot (such as a state variable of each Robot) or a single value (length 1 array, such as an average value
over all Robots).

Because of Python’s dynamic typing, this does not validate whether the subclass of Robot has any parame-
ters or functions that are called by the aggregator. The user is responsible for adding any necessary checks
in the aggregator function.

Notes

The width of the aggregator table is set when this function is called, which is determined by the length of
the output of func. If the length depends on the number of Robots, all Robots should be added to the
World before adding any aggregators to the Logger.

The aggregator func will be applied to all robots in the world, regardless of type. However, if you have
multiple types of Robots in your World, you can make an aggregator that applies to one type by filtering
the robots by type within the func.

Parameters

• name (str) – Key that will be used to identify the aggregator results in the HDF5 log
file.

• func (Callable[[List[Robot]], np.ndarray]) – Function that maps from a
list of Robots to a 1D array to log some state of the Robots at the current time.

get_trial()→ int
Get the trial number that this Logger is logging

Returns Number of the current trial being logged

Return type int

log_config(config: gridsim.config_parser.ConfigParser, exclude: List[str] = [])
Save all of the parameters in the configuration.

1.2. Class Reference 19

Gridsim, Release 0.3

Notes

Due to HDF5 limitations (and my own laziness), only the following datatypes can be saved in the HDF5
parameters:

• string

• integer

• float

• boolean

• list of integers and/or floats

Parameters

• config (ConfigParser) – Configuration loaded from a YAML file.

• exclude (List[str], optional) – Names (keys) of any configuration parameters
to exclude from the saved parameters. This can be useful for excluding an array of values
that vary by condition, and you want to only include the single value used in this instance.

log_param(name: str, val: Union[str, int, float, bool, list])
Save a single parameter value. This is useful for saving fixed parameters that are not part of your configu-
ration file, and therefore not saved with log_config().

This has the same type restrictions for values as log_config().

Parameters

• name (str) – Name/key of the parameter value to save

• val (Union[str, int, float, bool, list]) – Value of the parameter to save

log_state()
Save the output of all of the aggregator functions. If you have not added any aggregators with
log_state(), nothing will be saved by this function.

The runs each previously-added aggregator function and appends the result to the respective HDF5 Dataset.
It also saves the current time of the World to the time Dataset.

1.2.6 Messages

This provides a basic Message protocol for robot communication. Each message contains the ID of the sender and a
dictionary of message contents. The values of the message contents may be any type, so the receiver must know how
to process the data.

Additionally, Messages can optionally include a receiver type (rx_type). This is only needed if there are multiple
types of robots in the World, and you only want certain types of robots to receive the message.

If no arguments are provided when a Message is created, it creates a null message, which signals that the robot is not
broadcasting anything.

While it is possible to extend this class, the default Message class should meet most needs.

class gridsim.message.Message(tx_id: Optional[int] = None, content: Dict[str, Any] = {}, rx_type:
Type[gridsim.robot.Robot] = <class 'gridsim.robot.Robot'>)

__init__(tx_id: Optional[int] = None, content: Dict[str, Any] = {}, rx_type:
Type[gridsim.robot.Robot] = <class 'gridsim.robot.Robot'>)

A message sent by robots. Can be either a null (empty) message if no arguments are provided to the

20 Chapter 1. Index

Gridsim, Release 0.3

constructor. Or it contains the sender’s ID, a dictionary of content, and (optionally) the type of robot that
receives the message.

Parameters

• tx_id (Optional[int], optional) – ID of the sending (transmitting) robot, by
default None

• content (Dict[str, Any]] optional) – Dictionary of message keys and val-
ues, by default an empty dictionary. Keys must be strings, but values can be of any type
(incumbent on receiver to correctly interpret incoming data)

• rx_type (Type[Robot], optional) – Type of the receiving robot, by default
Robot (i.e., message will be processed by any Robot.)

get(key: Optional[str] = None)→ Optional[Dict[str, Any]]
Get the contents of the message

Parameters key (Optional[str], optional) – Name of the parameter to retrieve, by
default None. If not specified, a dictionary of all parameters will be returned.

Returns Dictionary of the message contents

Return type Optional[Dict[str, Any]]

Raises KeyError – If a key is provided but is not in the message contents

sender()→ Optional[int]
Get the ID (32-bit integer) of the robot that sent the message

Returns ID of the sending (transmitting) robot

Return type Optional[int]

1.3 Development

This is reference material for local development.

If you just want to use the library, you don’t need any of this.

1.3.1 Release checklist

• Verify tests and examples work

• Check that all documentation is updated

• Update version number (``version) in gridsim/init.py`

• Update changelog: move “Unreleased” to new version

• Push to master

• Create release on Github (This will automatically create a new documentation version on Read The Docs and
deploy an updated release to PyPi)

1.3. Development 21

Gridsim, Release 0.3

1.3.2 Build Documentation

from the docs directory, run:

make html

Then open the documentation:

open _build/html/index.html

1.3.3 Build the distributable for PyPi

(From the PyPi tutorial)

You shouldn’t need to do this manually anymore; this will be handled by Travis CI

Make sure the necessary dependencies are installed.

pip3 install --upgrade setuptools wheel twine

Build the project. From the project root folder, run:

python3 setup.py sdist bdist_wheel

Upload it to the testing index:

python3 -m twine upload --repository-url https://test.pypi.org/legacy/ dist/*

Upload it to the actual index:

python3 -m twine upload dist/*

1.4 Changelog

This documents changes for each Gridsim release. These can also be found with each Github release.

All notable changes to this project will be documented in this file.

The format is based on Keep a Changelog, and this project adheres to Semantic Versioning.

Versions

• 0.3 (2020-06-29)

• 0.2 (2020-04-20)

22 Chapter 1. Index

https://packaging.python.org/tutorials/packaging-projects/
https://github.com/jtebert/gridsim/releases
https://keepachangelog.com/en/1.0.0/
https://semver.org/spec/v2.0.0.html

Gridsim, Release 0.3

1.4.1 0.3 (2020-06-29)

Added

• Grid cells in the World can now be tagged with a color by the tag() method. (The color tag is only used by
the Viewer when it draws the World.)

• The Robot’s sample() method now includes an option to tag the sampled location in the World with a color.

• Message now has “truthiness”: null messages are False and non-null messages are True.

• Messages contents can be accessed by key with the get() method, as well as still being able to retrieve the
entire message dictionary contents.

• Created this changelog

Changed

• Message.tx_id() has been renamed to the (more informative) sender().

• Robot’s init() isn’t run until the robot is placed in the World. This allows robots to have access to World
information (like the arena size) in the init() method.

• [Under the hood] World’s environments are abstracted to have empty and non-empty types, which cleans up
code to get rid of reliance on checking for environments being None.

• [Under the hood] Reduce reliance on cheating and accessing private variables and methods (underscore-prefixed
methods/variables)

Removed

• Message.is_null has been removed. Instead, directly use the boolean conversion described above.

Fixed

• Order of commands run on the robot resulted in incorrect movements (robot-specific move(), then Robot
controller/loop function, then collision/environment-aware _move operation to move the robots which was
using a different move command)

• Remove mypy/flake8 from requirements, since they’re for local development/linting.

1.4.2 0.2 (2020-04-20)

Added

• Worlds now have environments (images) that can be sensed by Robots.

• Documentation has been improved, now with complete instructions for basic setup and usage.

1.4. Changelog 23

Gridsim, Release 0.3

24 Chapter 1. Index

CHAPTER

TWO

ABOUT

Gridsim is a Python 3 library for simulating robots in a grid-based world. It has a simple, well-documented API,
making it easy to implement your own algorithms with minimal overhead.

Key features include:

• Viewer for debugging and visualizing your simulations

• Built-in data logging to HDF5 files

• Support for YAML configuration files

• Extendable robot classes to avoid repeating your code

• Comprehensive documentation and examples

25

Gridsim, Release 0.3

26 Chapter 2. About

CHAPTER

THREE

QUICK INSTALL

$ pip install gridsim

For more information and instructions, check out the documentation.

27

https://gridsim.readthedocs.io/en/latest/

Gridsim, Release 0.3

28 Chapter 3. Quick Install

CHAPTER

FOUR

LINKS

Documentation: Read the Docs

PyPi: gridsim

Source code: Github

29

https://gridsim.readthedocs.io/en/latest/
https://pypi.org/project/gridsim/
https://github.com/jtebert/gridsim

Gridsim, Release 0.3

30 Chapter 4. Links

CHAPTER

FIVE

CONTACT

If you have questions, or if you’ve done something interesting with this package, send me an email: ju-
lia@juliaebert.com.

If you find a problem or want something added to the library, open an issue on Github.

31

mailto:julia@juliaebert.com
mailto:julia@juliaebert.com
https://github.com/jtebert/gridsim/issues

Gridsim, Release 0.3

32 Chapter 5. Contact

INDEX

Symbols
__init__() (gridsim.config_parser.ConfigParser

method), 17
__init__() (gridsim.grid_robot.GridRobot method),

16
__init__() (gridsim.logger.Logger method), 18
__init__() (gridsim.message.Message method), 20
__init__() (gridsim.robot.Robot method), 14
__init__() (gridsim.viewer.Viewer method), 17
__init__() (gridsim.world.World method), 12

A
add_aggregator() (gridsim.logger.Logger method),

19
add_environment() (gridsim.world.World method),

12
add_robot() (gridsim.world.World method), 13

C
comm_criteria() (gridsim.grid_robot.GridRobot

method), 16
comm_criteria() (gridsim.robot.Robot method), 14
ConfigParser (class in gridsim.config_parser), 17

D
distance() (gridsim.robot.Robot method), 14
draw() (gridsim.viewer.Viewer method), 17

G
get() (gridsim.config_parser.ConfigParser method), 17
get() (gridsim.message.Message method), 21
get_dimensions() (gridsim.world.World method),

13
get_pos() (gridsim.robot.Robot method), 14
get_robots() (gridsim.world.World method), 13
get_tick() (gridsim.robot.Robot method), 14
get_time() (gridsim.world.World method), 13
get_trial() (gridsim.logger.Logger method), 19
get_world_dim() (gridsim.robot.Robot method), 14
GridRobot (class in gridsim.grid_robot), 16

I
id (gridsim.robot.Robot attribute), 14
init() (gridsim.robot.Robot method), 15

L
log_config() (gridsim.logger.Logger method), 19
log_param() (gridsim.logger.Logger method), 20
log_state() (gridsim.logger.Logger method), 20
Logger (class in gridsim.logger), 18
loop() (gridsim.robot.Robot method), 15

M
Message (class in gridsim.message), 20
move() (gridsim.grid_robot.GridRobot method), 16
move() (gridsim.robot.Robot method), 15
msg_received() (gridsim.robot.Robot method), 15

R
receive_msg() (gridsim.robot.Robot method), 15
Robot (class in gridsim.robot), 14

S
sample() (gridsim.robot.Robot method), 15
sender() (gridsim.message.Message method), 21
set_color() (gridsim.robot.Robot method), 15
set_direction() (gridsim.grid_robot.GridRobot

method), 16
set_tx_message() (gridsim.robot.Robot method),

16
step() (gridsim.world.World method), 13

T
tag() (gridsim.world.World method), 13

V
Viewer (class in gridsim.viewer), 17

W
World (class in gridsim.world), 12

33

	Index
	Getting Started
	Class Reference
	Development
	Changelog

	About
	Quick Install
	Links
	Contact
	Index

